metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Aqua(hexamethylenetetramine- κN)bis-(methanol- κO)bis(thiocvanato- κN)cobalt(II)

Wei-Li Shang, Yan Bai,* Chao-Zhong Ma and Zhi-Min Li

Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China Correspondence e-mail: baiyan@henu.edu.cn

Received 16 May 2008; accepted 25 July 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (O–C) = 0.003 Å; R factor = 0.029; wR factor = 0.076; data-to-parameter ratio = 19.8.

In the title complex, $[Co(NCS)_2(C_6H_{12}N_4)(CH_4O)_2(H_2O)]$, the six-coordinated Co atom has a slightly distorted octahedral geometry. The molecules are linked by intermolecular $O-H \cdots S$ and $O-H \cdots N$ hydrogen bonds, forming a threedimensional crystal structure. Intramolecular C-H···N and $C-H \cdots O$ hydrogen bonds are also present.

Related literature

For information on the self-assembly of transition-metal complexes, see: Guo et al. (2002); Kumar et al. (2007); Venkateswaran et al. (2007); Chi et al. (2008). For complexes including hexamethylenetetramine (hmt) as ligand, see: Liu et al. (2006); Zhang et al. (1999); Meng et al. (2001); Li et al. (2002, 2007); Banerjee et al. (2007).

Experimental

Orthorhombic, Pbca

Crystal data [Co(NCS)2(C6H12N4)(CH4O)2- $(H_2O)]$ $M_r = 397.39$

a = 14.1128 (8) Å b = 15.3684 (9) Å c = 15.9839 (9) Å V = 3466.8 (3) Å³

Z = 8Mo $K\alpha$ radiation $\mu = 1.25 \text{ mm}^{-1}$

Data collection

Bruker APEXII diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\rm min} = 0.691, T_{\rm max} = 0.730$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	H atoms treated by a mixture of
$vR(F^2) = 0.075$	independent and constrained
S = 1.04	refinement
287 reflections	$\Delta \rho_{\rm max} = 0.64 \ {\rm e} \ {\rm \AA}^{-3}$
217 parameters	$\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$

T = 296 (2) K

 $R_{\rm int} = 0.022$

 $0.30 \times 0.30 \times 0.25 \text{ mm}$

20785 measured reflections 4287 independent reflections

3528 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Co1-N2	2.0400 (15)	Co1-O1W	2.1268 (14)
Co1-N1	2.0585 (15)	Co1-O1	2.1760 (13)
Co1-O2	2.1024 (13)	Co1-N3	2.2785 (13)
$N^2 - Co^1 - N^1$	176 69 (6)	$0^{2}-C_{0}1-0^{1}$	178.06 (6)
N2-Co1-O2	90.94 (6)	O1W - Co1 - O1	87.99 (6)
N1-Co1-O2	90.31 (6)	N2-Co1-N3	92.06 (6)
N2-Co1-O1W	89.59 (6)	N1-Co1-N3	90.98 (5)
N1-Co1-O1W	87.34 (6)	O2-Co1-N3	91.53 (5)
O2-Co1-O1W	90.09 (6)	O1W-Co1-N3	177.67 (6)
N2-Co1-O1	89.30 (6)	O1-Co1-N3	90.39 (5)
N1-Co1-O1	89.35 (6)		

Table 2 Hydrogen-bond geometry (\dot{A}, \circ) .

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4A\cdots N1$	0.97	2.52	3.119 (2)	120
$C4-H4B\cdots O1$	0.97	2.56	3.167 (2)	121
$C9-H9D\cdots N2$	0.96	2.56	3.181 (3)	123
$O1-H1\cdots N5^{i}$	0.80(2)	2.08(3)	2.824(2)	156 (2)
O1W−H1WA···N6 ⁱⁱ	0.76 (2)	2.07(2)	2.821 (2)	168 (3)
$O2-H2\cdots N4^{iii}$	0.78(2)	1.97 (2)	2.7417 (18)	172 (2)
$O1W - H1WB \cdot \cdot \cdot S2^{iii}$	0.88 (3)	2.55 (3)	3.4146 (16)	168 (2)
Symmetry codes: (i)	-x + 1, -y +	-2, -z+1; ((ii) $-x + 1, y + \frac{1}{2}$	$, -z + \frac{1}{2};$ (iii)

 $x + \frac{1}{2}, y, -z + \frac{1}{2}$

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful for financial support from the Natural Science Foundation of Henan Province and the Education Department of Henan Province.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2177).

References

- Banerjee, S., Choudhury, A. R., Guru Row, T. N., Chaudhuri, S. & Ghosh, A. (2007). *Polyhedron*, 26, 24–32.
- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chi, Y.-N., Cui, F.-Y., Xu, Y.-Q. & Hu, C.-W. (2008). J. Mol. Struct. 875, 42–49.
 Guo, D., Duan, C.-Y., Fang, C.-J. & Meng, Q.-J. (2002). Dalton Trans. pp. 834– 836.

Kumar, D. K., Das, A. & Dastidar, P. (2007). *Cryst. Growth Des.* **7**, 205–207. Li, X.-L., Niu, D.-Z. & Lu, Z.-S. (2007). *Acta Cryst.* E**63**, m2478.

- Li, G., Zhu, Y., Li, L. K., Hou, H. W., Fan, Y. & Du, C. X. (2002). Chin. J. Inorg. Chem. 18, 537–540.
- Liu, Q., Xu, Z. & Yu, K. B. (2006). Chin. J. Inorg. Chem. 22, 1095-1098.
- Meng, X. R., Li, L., Song, Y. L., Zhu, Y., Du, C. X., Fan, Y. T. & Hou, H. W. (2001). Acta Chim. Sinica, 59, 1277–1282.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Venkateswaran, R., Balakrishna, M. S., Mobin, S. M. & Tuononen, H. M. (2007). Inorg. Chem. 46, 6535–6541.
- Zhang, Y., Li, J., Xu, H., Hou, H., Nishiura, M. & Imamoto, T. (1999). J. Mol. Struct. 510, 191–196.

supplementary materials

Acta Cryst. (2008). E64, m1184-m1185 [doi:10.1107/S160053680802357X]

Aqua(hexamethylenetetramine- κN)bis(methanol- κO)bis(thiocyanato- κN)cobalt(II)

W.-L. Shang, Y. Bai, C.-Z. Ma and Z.-M. Li

Comment

Much interest at present is focused on the deliberate construction of transition metal ions and organic molecules by self-assembly of the component metal complexes. These solid materials are attractive to chemists not only for the variety of topologies and intriguing frameworks, but also for their interesting properties either by strong metal-ligand bonding or by weaker bonding forces such as hydrogen bonding and π — π interactions (Guo *et al.*, 2002; Kumar *et al.*, 2007; Venkateswaran *et al.*, 2007; Chi *et al.*, 2008). Among the ligands, hexamethylenetetramine (hmt), as a potential tetradentate ligand or hydrogen bonds acceptor, seems quite suitable in self-assembly systems. Several groups have reported that Co(II), Cd(II), Mn(II) or Ni(II) complexes with hmt and SCN⁻ as ligands form two-dimensional or three-dimensional networks (Liu *et al.*, 2006; Zhang *et al.*, 1999; Meng *et al.*, 2001; Li *et al.*, 2002; Banerjee *et al.*, 2007; Li *et al.*, 2007).

Herein, we present a new hmt complex, (I), based on Co^{II} , with SCN⁻ as ligand (Fig. 1). The title complex, which contains one cobalt center, one hmt, two NCS⁻, two coordinated methanol molecules and one coordinated water molecule, forms a mononuclear complex. The Co^{II} ion is surrounded by three N atoms and three O atoms (two N atoms from two isothiocyanates, one N atom from hmt, one O atom from coordinated water molecule and two O atoms from two methanol molecules) to attain a distorted octahedral coordination geometry. Moreover, the O atoms of both methanol molecules are each mutually *trans* to each other. Intramolecular C—H···N and C—H···O hydrogen bonds (Table 2) are important factors in the stabilization of the molecule.

In the crystal structure, molecules interact with each other, forming a three-dimensional supramolecular network through multiform intermolecular hydrogen bonds (Fig. 2 and Table 2). The O2 and O1w atoms form two O—H…N hydrogen bonds with N4 and N6 atoms of the adjacent hmt ligand, respectively. In addition, O1w—H…S2 hydrogen bond is also found in the solid state.

Experimental

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. Hexamethylenetetramine (0.50 mmol, 0.07 g), KSCN (1 mmol, 0.10 g) and Co(NO₃)₂.6H₂O (0.50 mmol, 0.15 g) were mixed in methanol (25 ml).The resulting purple solution was left for few weeks at room temperature to afford purple crystals (yield 65%). Anal. Calcd. for [Co(hmt)(SCN)₂(CH₃OH)₂(H₂O)]: C 30.23, H 5.58, N 21.15%. Found: C 30.21, H 5.59, N 21.16%. IR (KBr pellet, cm⁻¹): 3398 (*m*), 2951 (*m*), 2877 (*m*), 2079 (*vs*), 1666 (*m*), 1462 (*s*), 1379 (*s*), 1241 (*s*), 1010 (*s*), 814 (*m*), 687 (*s*), 516 (*m*), 480 (*m*).

Refinement

H atoms bonded to O atoms of CH₃OH and H₂O molecules were found in a difference map and refined freely. Other H atoms (hmt ligand) were generated geometrically and refined using a riding model: C—H = 0.97 Å, $U_{iso}(H) = 1.2 U_{eq}(carrier C)$.

Figures

Fig. 1. The molecular structure of the title complex, with displacement ellipsoids drawn at the 50% probability level. The hydrogen atoms are omitted for clarity.

Fig. 2. Perspective view of the three-dimensional network, showing the intermolecular hydrogen bonds (dashed solid lines) interactions.

Aqua(hexamethylenetetramine-кN)bis(methanol-кO)bis(thiocyanato-кN)cobalt(II)

Crystal data	
[Co(NCS) ₂ (C ₆ H ₁₂ N ₄)(CH ₄ O) ₂ (H ₂ O)]	$F_{000} = 1656$
$M_r = 397.39$	$D_{\rm x} = 1.523 {\rm ~Mg} {\rm m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 7990 reflections
a = 14.1128 (8) Å	$\theta = 2.3 - 28.3^{\circ}$
b = 15.3684 (9) Å	$\mu = 1.25 \text{ mm}^{-1}$
c = 15.9839 (9) Å	T = 296 (2) K
$V = 3466.8 (3) \text{ Å}^3$	Block, purple
Z = 8	$0.30 \times 0.30 \times 0.25 \text{ mm}$
Data collection	
Bruker APEXII diffractometer	4287 independent reflections
Radiation source: sealed tube	3528 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\text{int}} = 0.022$
T = 296(2) K	$\theta_{max} = 28.3^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -14 \rightarrow 18$
$T_{\min} = 0.691, \ T_{\max} = 0.730$	$k = -19 \rightarrow 20$

20785 measured reflections	$l = -18 \rightarrow 21$
----------------------------	--------------------------

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.075$	$w = 1/[\sigma^2(F_o^2) + (0.0359P)^2 + 1.3724P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
4287 reflections	$\Delta \rho_{max} = 0.64 \text{ e } \text{\AA}^{-3}$
217 parameters	$\Delta \rho_{\rm min} = -0.61 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Col	0.553065 (15)	1.038335 (14)	0.283547 (14)	0.02795 (7)
N1	0.65439 (11)	0.97495 (10)	0.35331 (10)	0.0373 (3)
C1	0.71280 (12)	0.94096 (11)	0.39145 (11)	0.0309 (3)
S1	0.79561 (4)	0.89311 (4)	0.44512 (4)	0.05772 (17)
N2	0.45742 (11)	1.10745 (11)	0.21469 (10)	0.0412 (4)
C2	0.40515 (12)	1.14790 (11)	0.17538 (10)	0.0318 (3)
S2	0.33147 (4)	1.20788 (3)	0.12175 (3)	0.04690 (13)
N3	0.43978 (9)	0.94296 (9)	0.32720 (8)	0.0262 (3)
N4	0.27067 (9)	0.91344 (9)	0.34713 (9)	0.0310 (3)
N5	0.38399 (10)	0.86701 (9)	0.45350 (9)	0.0329 (3)
N6	0.37919 (10)	0.79376 (9)	0.31828 (9)	0.0320 (3)
C3	0.34122 (11)	0.97472 (10)	0.31390 (11)	0.0295 (3)
H3A	0.3336	1.0306	0.3412	0.035*
H3B	0.3304	0.9829	0.2545	0.035*
C4	0.45227 (12)	0.92901 (11)	0.41871 (10)	0.0311 (3)
H4A	0.5159	0.9078	0.4291	0.037*
H4B	0.4455	0.9843	0.4473	0.037*
C5	0.44845 (11)	0.85686 (11)	0.28545 (10)	0.0301 (3)
H5A	0.4387	0.8639	0.2258	0.036*
H5B	0.5120	0.8344	0.2939	0.036*
C6	0.28784 (12)	0.90063 (12)	0.43761 (10)	0.0359 (4)
H6A	0.2798	0.9556	0.4665	0.043*
H6B	0.2416	0.8600	0.4597	0.043*
C7	0.28332 (12)	0.82913 (11)	0.30472 (11)	0.0341 (4)
H7A	0.2726	0.8364	0.2452	0.041*
H7B	0.2368	0.7881	0.3257	0.041*
C8	0.39459 (13)	0.78357 (11)	0.40908 (11)	0.0355 (4)
H8A	0.3493	0.7420	0.4312	0.043*

supplementary materials

H8B	0.4577	0.7607	0.4188	0.043*
O1	0.52358 (11)	1.12213 (8)	0.39015 (8)	0.0416 (3)
H1	0.5632 (16)	1.1230 (15)	0.4256 (16)	0.054 (7)*
C9	0.4697 (2)	1.19973 (17)	0.39250 (16)	0.0775 (9)
H9A	0.4301	1.1996	0.4413	0.116*
H9D	0.4308	1.2033	0.3433	0.116*
H9B	0.5116	1.2489	0.3945	0.116*
O2	0.58559 (9)	0.95999 (9)	0.17962 (8)	0.0368 (3)
H2	0.6396 (16)	0.9493 (13)	0.1762 (13)	0.039 (6)*
C10	0.54971 (15)	0.97087 (17)	0.09672 (13)	0.0556 (6)
H10D	0.5700	0.9230	0.0625	0.083*
H10A	0.5733	1.0243	0.0737	0.083*
H10B	0.4817	0.9726	0.0983	0.083*
O1W	0.66088 (11)	1.12763 (9)	0.24788 (10)	0.0439 (3)
H1WA	0.6425 (17)	1.1713 (16)	0.2319 (16)	0.054 (7)*
H1WB	0.7014 (18)	1.1426 (16)	0.2873 (16)	0.063 (8)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.02528 (12)	0.02913 (12)	0.02945 (12)	0.00166 (8)	-0.00442 (8)	0.00671 (8)
N1	0.0328 (8)	0.0382 (8)	0.0408 (8)	0.0019 (6)	-0.0058 (6)	0.0072 (6)
C1	0.0299 (8)	0.0296 (8)	0.0333 (8)	-0.0020 (6)	-0.0040 (7)	-0.0008 (6)
S1	0.0564 (3)	0.0461 (3)	0.0707 (4)	0.0114 (2)	-0.0366 (3)	-0.0015 (3)
N2	0.0362 (8)	0.0436 (9)	0.0437 (9)	0.0042 (7)	-0.0059 (7)	0.0111 (7)
C2	0.0306 (8)	0.0336 (8)	0.0314 (8)	-0.0002 (7)	-0.0020 (7)	0.0022 (7)
S2	0.0437 (3)	0.0503 (3)	0.0468 (3)	0.0126 (2)	-0.0123 (2)	0.0089 (2)
N3	0.0253 (6)	0.0283 (7)	0.0251 (6)	-0.0001 (5)	-0.0025 (5)	0.0014 (5)
N4	0.0265 (7)	0.0330 (7)	0.0336 (7)	0.0002 (5)	0.0006 (6)	-0.0010 (6)
N5	0.0338 (7)	0.0373 (8)	0.0277 (7)	-0.0022 (6)	0.0008 (6)	0.0043 (6)
N6	0.0356 (7)	0.0268 (7)	0.0336 (7)	-0.0008 (6)	0.0021 (6)	-0.0015 (6)
C3	0.0284 (8)	0.0286 (8)	0.0314 (8)	0.0024 (6)	-0.0020 (6)	0.0011 (6)
C4	0.0327 (9)	0.0363 (9)	0.0243 (7)	-0.0034 (7)	-0.0044 (6)	0.0020 (6)
C5	0.0307 (8)	0.0299 (8)	0.0297 (8)	0.0017 (6)	0.0031 (6)	-0.0018 (6)
C6	0.0335 (9)	0.0435 (10)	0.0308 (8)	0.0009 (7)	0.0065 (7)	-0.0010 (7)
C7	0.0314 (9)	0.0346 (9)	0.0364 (9)	-0.0058 (7)	-0.0025 (7)	-0.0032 (7)
C8	0.0379 (9)	0.0310 (8)	0.0377 (9)	-0.0003 (7)	0.0013 (7)	0.0075 (7)
01	0.0519 (8)	0.0371 (7)	0.0358 (7)	0.0080 (6)	-0.0109 (6)	-0.0021 (5)
C9	0.116 (2)	0.0597 (15)	0.0565 (15)	0.0428 (15)	-0.0207 (15)	-0.0112 (12)
O2	0.0253 (6)	0.0531 (8)	0.0319 (6)	0.0018 (5)	-0.0003 (5)	0.0017 (5)
C10	0.0418 (12)	0.0907 (18)	0.0343 (10)	0.0045 (11)	-0.0045 (8)	0.0006 (10)
O1W	0.0411 (8)	0.0344 (7)	0.0562 (9)	-0.0044 (6)	-0.0076 (7)	0.0132 (7)

Geometric parameters (Å, °)

Co1—N2	2.0400 (15)	С3—Н3В	0.9700
Co1—N1	2.0585 (15)	C4—H4A	0.9700
Co1—O2	2.1024 (13)	C4—H4B	0.9700
Co1—O1W	2.1268 (14)	С5—Н5А	0.9700

Co1—O1	2.1760 (13)	С5—Н5В	0.9700
Co1—N3	2.2785 (13)	С6—Н6А	0.9700
N1—C1	1.151 (2)	С6—Н6В	0.9700
C1—S1	1.6256 (17)	С7—Н7А	0.9700
N2—C2	1.151 (2)	С7—Н7В	0.9700
C2—S2	1.6327 (17)	C8—H8A	0.9700
N3—C5	1.487 (2)	C8—H8B	0.9700
N3—C4	1.489 (2)	O1—C9	1.415 (2)
N3—C3	1.489 (2)	O1—H1	0.80 (2)
N4—C3	1.470 (2)	С9—Н9А	0.9600
N4—C7	1.473 (2)	С9—Н9D	0.9600
N4—C6	1.480 (2)	С9—Н9В	0.9600
N5—C4	1.465 (2)	O2—C10	1.428 (2)
N5—C8	1.473 (2)	O2—H2	0.78 (2)
N5—C6	1.474 (2)	C10—H10D	0.9600
N6—C5	1.473 (2)	C10—H10A	0.9600
N6—C7	1.474 (2)	C10—H10B	0.9600
N6—C8	1.476 (2)	O1W—H1WA	0.76 (3)
С3—НЗА	0.9700	O1W—H1WB	0.88 (3)
N2—Co1—N1	176.69 (6)	N6—C5—N3	111.79 (12)
N2—Co1—O2	90.94 (6)	N6—C5—H5A	109.3
N1—Co1—O2	90.31 (6)	N3—C5—H5A	109.3
N2—Co1—O1W	89.59 (6)	N6—C5—H5B	109.3
N1—Co1—O1W	87.34 (6)	N3—C5—H5B	109.3
O2—Co1—O1W	90.09 (6)	H5A—C5—H5B	107.9
N2—Co1—O1	89.30 (6)	N5C6N4	111.46 (13)
N1—Co1—O1	89.35 (6)	N5—C6—H6A	109.3
O2—Co1—O1	178.06 (6)	N4—C6—H6A	109.3
O1W—Co1—O1	87.99 (6)	N5—C6—H6B	109.3
N2—Co1—N3	92.06 (6)	N4—C6—H6B	109.3
N1—Co1—N3	90.98 (5)	H6A—C6—H6B	108.0
O2—Co1—N3	91.53 (5)	N4—C7—N6	111.58 (13)
O1W—Co1—N3	177.67 (6)	N4—C7—H7A	109.3
O1—Co1—N3	90.39 (5)	N6—C7—H7A	109.3
C1—N1—Co1	178.20 (15)	N4—C7—H7B	109.3
N1—C1—S1	179.8 (2)	N6—C7—H7B	109.3
C2—N2—Co1	178.33 (16)	H7A—C7—H7B	108.0
N2—C2—S2	178.14 (17)	N5-C8-N6	111.51 (13)
C5—N3—C4	107.64 (13)	N5—C8—H8A	109.3
C5—N3—C3	107.72 (12)	N6—C8—H8A	109.3
C4—N3—C3	107.34 (12)	N5—C8—H8B	109.3
C5—N3—Co1	112.16 (9)	N6—C8—H8B	109.3
C4—N3—Co1	108.08 (9)	H8A—C8—H8B	108.0
C3—N3—Co1	113.63 (9)	C9—O1—Co1	128.49 (13)
C3—N4—C7	108.37 (13)	С9—О1—Н1	110.2 (17)
C3—N4—C6	109.12 (13)	Co1—O1—H1	115.6 (17)
C7—N4—C6	108.23 (13)	О1—С9—Н9А	109.5
C4—N5—C8	108.45 (13)	O1—C9—H9D	109.5
C4—N5—C6	108.18 (13)	H9A—C9—H9D	109.5

supplementary materials

C8—N5—C6	108.39 (14)	O1—C9—H9B	109.5
C5—N6—C7	108.29 (13)	Н9А—С9—Н9В	109.5
C5—N6—C8	108.81 (13)	H9D—C9—H9B	109.5
C7—N6—C8	108.60 (13)	C10—O2—Co1	126.06 (13)
N4—C3—N3	111.79 (12)	C10—O2—H2	107.8 (16)
N4—C3—H3A	109.3	Со1—О2—Н2	112.9 (16)
N3—C3—H3A	109.3	O2-C10-H10D	109.5
N4—C3—H3B	109.3	O2—C10—H10A	109.5
N3—C3—H3B	109.3	H10D-C10-H10A	109.5
НЗА—СЗ—НЗВ	107.9	O2-C10-H10B	109.5
N5—C4—N3	112.87 (13)	H10D-C10-H10B	109.5
N5—C4—H4A	109.0	H10A-C10-H10B	109.5
N3—C4—H4A	109.0	Co1—O1W—H1WA	114.4 (19)
N5—C4—H4B	109.0	Co1—O1W—H1WB	116.1 (16)
N3—C4—H4B	109.0	H1WA—O1W—H1WB	103 (2)
H4A—C4—H4B	107.8		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C4—H4A…N1	0.97	2.52	3.119 (2)	120
C4—H4B···O1	0.97	2.56	3.167 (2)	121
C9—H9D···N2	0.96	2.56	3.181 (3)	123
O1—H1···N5 ⁱ	0.80 (2)	2.08 (3)	2.824 (2)	156 (2)
O1W—H1WA…N6 ⁱⁱ	0.76 (2)	2.07 (2)	2.821 (2)	168 (3)
O2—H2···N4 ⁱⁱⁱ	0.78 (2)	1.97 (2)	2.7417 (18)	172 (2)
O1W—H1WB…S2 ⁱⁱⁱ	0.88 (3)	2.55 (3)	3.4146 (16)	168 (2)

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, y+1/2, -z+1/2; (iii) x+1/2, y, -z+1/2.

Fig. 1

Fig. 2

